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THE CALCULATION OF DOWNWASH BEHIND SUPERSONIC WINGS
WITH AN APPLICATION TO TRIANGULAR PLAN FORIMS

By HARVARDLOMAX,LOMASLIJDER,and JIAx. A. HEASEET

SUMMARY

A method i~ dereloped consistent with the assumptions of
wna[l perturbation theoy which provides a means of determining
the doimwash behind a wing in 8upersonic jow for a known
load distribution. The analysis is based upon the use of
supersonic doublets which are distributed orer the plan form
and wake of the mung in a manner determined from the wing
loading.

The equivalence in subsonic and supersonicflow of the doum-
wash at infinity corresponding to a giwn load distm”bution is
prored. In order to introduce the manipulative techniques
tohich are subsequently employed, the unswept wing of infinite
span is treated for supersonic speeds. The principal applica-
tion in this report, hmcewr, i8 concerned with the downuxmh
behind a triangular wing w“th [eading edges swept back of the
Mach cone from the rertex. Complete solutions are gicen for
the chord plane in the extended cortex uv.ke of the mung and for
the rertical plane of symmetry. An appro~”mate 8olution iS
also prom”dedfor points in the m“cinity of the center line of the
wake.

INTRODUCTION

The Iinemization of the partial diflerent.ialequation sr&-
fied by the velocity potential for compressible flow yields, for
subsonic Jlighi speeds, an elIiptic+pe equation which is re-
ducibIe by means of an ehmentary transformation to the
basic equation in incompressible flow. h s, consequence of
this result, wing theory in the subsonic realm employs the
same concepts and types of analyses that beIong to cla.ssicd
incompressible theory. At supersonic speeds, the differential
equation for the veIocit.y potential is hyperbolic in type and
for wing theory is equi-ralent to the two-dimensional wave
equation of physics. In spite of the ditlerent character of the
basic differential equation in the two flight regimes, certain
formal equivalences cambe set up which are intuit.iveIy use-
ful in the solutions of specific prob~erns. In particular, the
velocity potentials of a three-dimensional source and of a
doubIet each have analogous forms in the two cases. The
soIut.ion of ddlerent boundary-due problems encountered
in wing theory has been discussed in reference 1, and it has
been shown how suitabIe distributions of sources and doublets
may be used to determine the flow potential associated with a
given lifting or nordifting wing.

The calculation of downwash behind a wing, for incom-
pressible flow, rdiss ahnost exclusively on the use of PrandtI’s
lifting-line theory which is, in turn, developed from the con-

cept of a singIehorseshoe vortex. The convent iona~approach
to the generaI do.wnwash problem is to determine, first., the
induced field of the simpIe horseshoe vortex by means of the
Biot-%vart law and, then, from a knowledge of the span-wise
distribution of Ioading over the wing, to ca.IcuIatefin@ly the
induced fieId produced by a,vortex sheet,composed of super-
imposed vortices of varying span.

Vi%en dowmvash cahmlations are to be extended to the
case of supersonic wings, it appears at iirst that the use of
vortex sheets is” inadmissib~e since no practical equivalent
to the Biot-Savart Iaw e-tits. It is, in fact, true that the
horseshoe vortex no longer pIays the outstanding role it-
has at low speeds. However, -whena more detailed investi-
gation is made of the underlying ana~ysis,it becomes apparent
that vortex theory and the Biot-Savart law can be developed
from the initial use of a constant distribution of doublets
over a given surface (e. g., see references 2 and 3). These -
doublets produce a discontinuity in the velocity potential
at the surface, and, for incompressible theory, the curve
which bounds the surface can be ident.i6ed mit.h a vortex
curve possessing circulation.. The proof of the Biot-Sava.rt.
Iaw and the introduction of vortex sheets are direct conse-
quences of these basic ideas.

Since, as was shown in reference 1, supersonic boundary-
value prcbIems involving sources, sinks, and doublets can
be solved in a manner anaIogous to that used in Iovr-speed
theory, a method is therefore provided for an attack on the
down-wash probIem for supersonic pIan forms through the
use of doubIet distributions. By means of this method the
down-ivashimmediately back of the trailing edge and at an
infinite distance behind a wing wilI be derived and shown to
agree with the previously published resuIts of P. A. Lager-
st-rom (reference 4).

The present report has three principal aims: First, to out-
line the theoretical approach to the determination of the
velocity potentiaI of the flow field associated with a supersonic
lifting surface and the subsequent calculation of the down-
-wash;second, to apply the theory to the case of a triangular
wing swept back of the Mach cone and to present the resuIts
of the complete calculations over the chord plane in the
extended vortex wake of the wing and on the vertical plane
of symmetry up to about 40 percent of a semispan; and,
third, to serve as a guide through some of the more difilcult
mathematical manipuhtt.ionsso that the calculations can be
extended to other plan forms. .4 simpIe fit approximation
is also ad-ranted for the do-ivnwashvariation about the a.xi~
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of symmetry, and these approximate values of downwash
are compared with thoso obtained from the exact calculations.

In the theoretical portion of the report, the “boundtiry-
value problem will be introduced and the.solutions, obtained
from Green’s theorem, will be given for low-speed and super-
sonic flow. In the section of the report devoted to applica-
tions, the theory will be used to evaluate the potentird func-
tion at an infinite distanco downstream from a lifting wing.
The theory is next applied to the case’of the .uiisweptwing
of infinite span since the mathematical problems involved
correspond cIosely to those for the more general case. From
this application, a general pro.ccdure is”developed for treat-
ing wings with supersonic trailing edge:. The final applica-”
tion of the report will be devoted to th~triangqlar wing. In
all of these applications-, it will be sije.nthat the analytic
expressions which have been obtained in supersonic theimy
for the load distributions over certain plan forms afford a
means whereby the chordwise dist,rib.utionof_pressure may
be introduced into the amdysis, and, therefore, such expedi-
ents as lifting-limetheory are no longer.so essential.

The entire theory is postdated on the. assurnptioni”of.
thin-airfoil or small-perturbation theory and, consequently,
thkkness effects ancllifting-plate solutions are additive. For.
the results that are given in the plane of the airfoil, the thick-
ness effect, which is ncccssaij-Iysymmetrical with respect to
dlis plane, is zero.

The material given in the present ie~tirt is a combination
of two previously published .NACA Technical Notes (refe.r-
enc.ss5 and 6).

LIST OF IMPORTANT SYMBOLS

a.
b,

;, Eo

E(t, k)

H

k,
K

F(t, k)

.Mo

P
Ap

velocity of sound in the free stream
span of wing
root chord of wing
complete.elIiptic igtegra.1of the second kind wjth

modulus k, ko, respective~y

(E=M=4““ .“
incomplete elliptic integgal of the second kind

with argument t and modulus k

2avo
w

—.

m’-”””
complete elliptic jntegral of the first kind with

[smodulus k .K= ; J(l-tz;l _k@ 1
incomplete elliptic integral of the first kind with

argument t a:ndmodulus k ., ---

~(’}k)=~j(l-t;l-k2t2)] -

()free-stream Mach number ~

static pressure
P1—pu

(.)
free-stream dynamic pressure ~ POV02

u
‘l ““,
L. E. .
T. E.
w -..
P.
8 ‘ “--””
1, II, XII

4(-4’+ (Y–y,)’+ (2–2,)’ “, -:
4(-W)’-P’(Y-YJ’-P2(ZJZJ’
perturbation velocity components in tho dMcc-

tion of the x, y, and z axes, respect.ivcly ““
u~—ul
free-stream velocity
z component of velocity induced by doublet dis-

tribution over plan form
z component of velocity induced by doublet dis-

tribution over wake
–Vcla
Cartesian coordinates of an mbitmry j?oint ‘.”
Cartisinn coordinates of source or _doublet”

position
x .- ---
G“
j?~
z
~z —
~
angle of attack
JMo:-l
L?tan$

“~’’ch~riwrc%k):

density in free stream -.

perturbation velocity potential
@u—@l . .
semivertex angle of triangular wing
sign denoting finite”part of integral

1
1

1

.i
,

.-

..

SUBSCRIPTS

conditions on upper portion of surfaco
conditions on lower portion of surfaco”
condi~iogs at leading cdgo
conitions at trailing edge ,
wake .
plan-form “ i
conditions on discontinuity surface (at Z1= O)
conditions in regions 1, II and 111 on pkm form ,

(fig. 4)
A, B, (?,D, Econditions in regions A, B, C, D, or E, in ti~ake

of triangular wing (figs. 1 and 2) I
. . . . .

THEORY

BOUNDARY CONDITIONS

The proposed problem is ono of finding the downwmh
behind ~ flat platp which supports a loading consistent with
its rmgle of atttick and plan form. It ‘wiI1 bo assumed
throughout the amdysis that thk load distribution is known, j
Such values were given for several pkm forms in referenco 7
and. further results can be found in the literature on siqmr- I
sonic \tings.

The .Ioad distribution over the wing may bo obtained
from a knowledge of the differences in pressures acting on
the lower and upper surfaces. Moreover, in t,hin-ahjoil :
t.heo~y, where boundary conditions are given in the z= O
plane (i. e., the plane of the wing), a simple relation is!se?. “

I
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between local-pressure coefficient and the streamwise com-
ponent of the perturbation velocity. Thus, assuming that
the free-stream direction coincides with the positive z axis
(fig. 1 (a)), and denoting by u. the z component of the
perturbation velocity, it follows that

(1)

where the variables are d&ned in the table of the symbok.
Furthermore, from the definition of the perturbation velocity
potential @

-z
@=

J
mix (2)

a

where a is a point in a region at.which the potent id is zero.
Combining equations (1) and (2), the jump in potential in
the plane z=O can be determined by integrating the jump in
the u induced veIocity or, what amounts to the same thing,
the jump in load coefficient. Thus,

C3)

where the integration extends from the Ieadmg edge to the
point x and A@, represents the jump in @ in the xy plane.
Since load coefficientAp/q must.be zero off the -wingand since
u is an odd function in z, the -rahle of u- must be zero for
all points off the wing in the w plane. It follows that. AOS
remains constant at a given span station for all values of x
beyond the trailing-edge position.

I
Vo

Al -Y

““kill
A A’ B B’ Y

(a) Pfmform.
(b) Sectionsshowing dfstributirmof A.%

FIGUEEL-Sketoh showing axbitrery lifting surface together with di.strl%utionof A%, the
jump in perturbation relocit y potentiaf in the Diane of the surface.

Figure 1 indic.at.esan arbitrary Iifting surface in the z= O
plane together with the distribution of A@, for given constant
values of y and x. In both subsonic and supersonic theory,
the wing together with the semi-infinite strip extending

downstream of the ring form a discontinuity surface for the
velocity potential, while A@s is equal to O throughout the
remaining portion of the zy plane. These conditions,
together with the fact. that the vertical induced ~elocity w is
a continuous function at z= O, are snfEcient.to determine @
throughout space. The values of u-, u, and w can then be
found from the correspondii partial derivatives of @ with
respect to z, y, and z. The attentior) in the presentireport is
centered on w, the dowmwash function.

SOLUTfOX TO BOUNDARY-VALUE PROBLEM

In reference 1, the solutions for boundary-value problems
of the type under consideration were given for both incom-
pressible and supersonic theory. The basic difTerentia.1
equations satisfied by the perturbation velocity potentitd are,
for the two cases, respectively,

.

g+g+;;=o (4)

and

(5)

Incompressible theory.—For boundary conditions pre-
scribed in the z= O pla.ne; the solution of equation (4) is

(6)
where

r= ~J(x—zJ2+ (y-yI)*+ (Z—ZJ2

ancl r is the area for -which the integmmd does not vanish.

()The terms ~~ and & & ~ , are equal to the velocity

potential at z,y, z of a unit source and doublet situated at
the point xl, yl, O. The remaining terms in the integmnd,
which determine the distribution of source and doublet
strengths, must be found from known boundary conditions.
If a Iifting surface fixes the boundary conditions, induced
vertical velocities on the upper and lower faces of the surface
are equaI so that

b~. a~i
Z=G

and

‘WA’+%).’’’’” “)
W, Y,~) 4T ,

Equations (6) and (7) are ‘ivelIknown in potential theory
(reference 3, p. 60), but the derivation usually employs the
assumption that the value of @ is zero at all points infinitely
distant from the wing. This assumption cannot., of cove,
be made in aerodynamic applications where the discont~m~ty
surface r extends to z= m, as in t~hecase of a lifting wing or
Iifting line with trailing vortices. These latter problems,
with which this report is directly concerned, are of such a
natm-e, however, that the induced efiects at an infinite dia-
ta-nce are confined to the plane x= ~. An investigation of
the derivation of equation (6) reveals that the conditions
imposed on O, in general, can be relaxed suftkiently to permit
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a discontinuity in a strip of .~nite wi~th along the entire
extent of the x axis. The mathematical details of the deriva-
tion will not be given here but a statement of the restrictions
on @ at infinity is worthwhile. Thus, denoting by M/Zm the
directional derivative of @ tia.kennormal to a prescribed
surface, the following conditions apply:

1. The functions@ and bQ/tM are zero at all points having
radius vectors which make finite (nonzcro) angles with the
positive z axis, tho points lying on a spherical surface of
ifilte radius with center at the wing. (This preserves the
usual poteutia.1theory assumptions except over the portion
of the spherical surface forming the plane x= m.)

2. The values @ and M/?x are bounded at all points
infinitely distant from the lifting surface and at a noninfiuite
distance from the positive x axis. (Thk condition places
restrictions on the values of@ and M/bx in the plane x= cu.)

Conditions (1) and (2) are satisfied for a lifting surface of
fini~e span, and equation (7) is consequently applicable
directly to the determination of the velocity potential As
an application of the equation, suppose.a_sheet of horseshoe
vortices is situated as in figure’2 with bound vortices placed

z

#

Aqi, (v)...

. . .

w .—
FIGURE 2.–Vortex eheet with bound vortkes on u axis and distribution of ofrculatIon

equal to A%

on the y axis, trailing vortices exten~lng. parallel to the
positim x axis, and has a spanwise distribution of circulation

A@ symmetrical to the. x2 plane and defined for –~<!/<~”

The? the velocity potential corrcspon~ing to this vortex
sheet is given by the expression .’

When A@,=constant, a single horseshoe vortex results.

Supersonic theory,—For supersonic boundary-value prob-
lems associated wihh plan forms as indicated in figure 1 (a),
whexe the known conditions are given--in the z= O plane,
the genwd solution of equqtion (5) is given in reference
~in the form .: . . .. ~<_ .-.

where

-4T,– (z–x,)*–@*(y–y,) ~–p2(z–zl)’
and the subscript $ on the parentheses indicates that the
function is to be evaluated a! zI=O. ~hg region r is that

portion gf tie Xlyl plane bounded by the lending edge of
the wing, the lines parallel to the x axis nnd stemming from
the lateral tips of the wing, and tho trace in tho ZI=0 plnno
of the Mach forccone with vertex at the point x, y, z. The!
sign ~ is to be read “finite part of” and was introduced
by Had.ammd (reference 8) as a manipulative tc~hnique
with the property that

For purposes of calculations, this was modified in rcferenco
1 to

the aste.risl{indicating that no upper limit is to be substituted-” .
into the indefinite integral, the latter being determined as

where
F(z) +C ‘“

C=lim
[

2=4(zo) ~(z)
z-m ~x 1

-.
1
,

lZquatj& (9) is the direct analogue of equ?tion (6). ~h;’-

1(’) T’)terms ~ ~ , and ~ ~ ~ *are cqmd to the velocity potcn- ~

tial at z, y, z of a unit supersonic source and doublet situated
at the pciint z1, vI, O, while the remaining terms in the inta-
grand determine the distribution of source and doublet
strength ~nd are determined by the known boundary condi-
tions.

When the potential function associated with a lifting
surface is to be evaluated, 1

,-

and,equation (9) reduces to the form
.-

In application, the region of integration in equations (7) and
(12) can” be divided into nreas occupied, respectively, by “‘
the plan form and the wake region. Thus, for equation (12), .

—2!/9
wY,2)=y

1ss

A*$dx@l
plan form [(*—W) ‘—pa (Y—?/l)*-@21S’*-

Equation (13) presents a formal solution for-the calculation
of velocity potential and, subsequently, downwash for m
given surface in terms of A@,, Since A+, was related directly
to load distribution in equation (3), it is apparent that the ~
various known solutions to lifting-surface proble.ms are ‘
directly applicable. The fact that supersonic theory per-
mits the determination of load distribution in closed analytic
form for many simple plan forms provides a distinct advan-
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tage that is lacking in subsonic theory wherein virtually d
known results are avaiIabIe only in numericaI form. Thus,
theoret.icaI analysis of probkns involving supersonic flight.
speeds can be carried further before recourse to numerical
methods is necessary.

APPLICATIONS

VALt~E OF PO TEXTIAL FUX~~(J N AT x= m

It is possibk to show, from equations (7] and (12), thti~
the poteLLtial functions corresponding to a wing with fixed
load clistribution are identical at z= ~ for incompressible
and supersonic flow. Assuming A@s known, the values of
(z, y, z) for the two cases are given, respectively, by the
equations

and
–p*z

Xc,y,z)==
Ifs

Aa?dqfiy,

. pkm form [ (2—XI) 2—/92 Q/—YI) 2—~2Zq3/2—

/9*~

UT

M,dx,dyl

~
. w2ke [(Z—ZI) 2—192(Y-~J 2—~2Z2]3’2

Since, however, LW, is finite, ik follovis immediately tha~

for fixed values of y and z the integrals over the plan form
in both equations approach zero as z increases inclefiniteIy.
Thus, denoting by x=.=. the value of xl at the traiIing edge
of the wing, the potent.id functions at z= ~ are given by
the expressions

r fix,.J:.r.[(z–u)’+ Q/-yJ%-zq3’2
and

These relations can be in~egratedonce to give for the subsonic
case

(14a)

and for the supersonic case

From these equations, it foIIows that.the side-iiashand down-
wash at x= ~ are invariant with Mach number, provided the
load distribution is fixed. In fact-, their values depend solely
on the spanwise load distribution, since the terms correspond-
ing to the chordwise distribution disappeared in the analysis.
This has been pointed out else-wherein the Literature. It
should be stressed, however, that the resuh which has been
obtained here states that eqm-dspan load distributions in the
two cases yield equal vaIues of the potential function at.
g=cn. This does not imply that a wing at low and super-
sonic speeds maintains the same potential function at in-
finity. When the wing is kept fked, the distribution of w
on the wing is fixed, but the load distribution is a function of
speed.

DOWXWASH ON A!!D OFFTHER=G

.-s a further apptica.tion, the unswept wing of infinite span
will be treated for supersonic speeds. In this case, as is
well known, the induced -velocities are zero at all points
downstream of the upper and lower l[a.ch waves stemming
from the trailing edge. A.n abrupt jump in vertical -velocity
therefore occurs at. the traiIing edge of the wing. Con-
siderat.idnof this jump for the unswept wing furnkhes con-
siderable h-sight into the nature of the mathematical difh-
cuhies” inherent. in the calculation of downwash on and off
wings of arbitrmy plan form. The ca.~cdation for the par-
ticular case will therefore be followed by a more general
discussion which will be of value in connection with the later
treatment.of the tria.ngdar wing.

!3:66A&51-15

Unswept wing of infinite span.—The pressure distribution
for the wing of infinite asp~ct ratio is-constant.
so-caIIed ~ckeret.-t.ype loading, Ap/q is equal to
that, when the leading edge Iies tdong the y a.tis

For this
4c2/& so

(15a)

(a) Point P abmd of bailing edge. (3) Point P behind trafiing edge.

FIGL!BE3.—A.reeaoffntegration for infinite span wfng.

where a is angle of attack. In the wake

(15b)

The dovmwash, or vertical velocity, wiIl first be found when
the point, is between the Mach waves from the leading and
t-railingedges and then when the point is downstream of the ._.
trailing-edge -wave.
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Since the wing is of infinite width and experiences no variat-
ion with y, it is possible to consider the problem at i=O.
Thus, from equation (13), for the case when the point under
consideration is between the Mach waves from the leading
and tmding edges with its forecone cutting the wing as shown
in figure 3(a),.

.-
. . .

..—

J—-@v;&’z-~ea+r2,.@=Iim xl dxl
e-)0 Tp o .

where the symmetry of the problem with respect to. the YI
axis has been used. Computing the finite part of “theintegral

.=.-. .— ----- .-

. .-
.. .. . . .-

FOR AERONAUTICS ,.._—

and
-.

-J
=“~-/jJ~# xldxL

o [(z–x,)~–p%a] 4(Z–XJ+3%+9%2
(17)

._____ -.
Equations (f 6) and (17) can be evaluated direc~ly to give the
results .!”~

.:=%%* -“) “- :8) ‘.

W=–voa” ‘“ } . .-

l?or a p&t behind the trailing-edge wav~ (fig. 3 (b)), th 1
two quantities can be determined in a similarmannci..”” ‘JTius,....__...,

J2z/sv@E co
@ =Iim

XI dzl _2z@voCtCo
.s --

i%)’-~fl “““
-“:_B;~ ““” ;Xl -“;: .

0 [(x=xy-~zzq (Z.--q) +92.Z+A?
dy,

s [(x–x*)~–@y~_p2z2]8/’ ““*-io u r o — co
.&. .-

-.

and w is given by the partiald.ejvativeyof @,wit~ respect to z.
The term containing the singla integ@ is zero,,_since the
integral itself is bounded for W values .of e, while the term
containing the double integral is readily calculable. Thus,
the values of the velocity potential and the dofiivash for a
point b&@d the trailing-edg? wave are.given by the re.lati?ns

(20)

These results are.the familiar equations associated with tmo-
dimensional supersonic ffatplate theory.

The point of principal interest iq this deve.1.opmentis the.. :. —
jump in the induced verticxdvelocity ~-fi’passing fro-ma-point
just ahead of the trailing-edge wave to -a point kmediately
behind the wave. LA study of equations (17) and (19) shows
that this jump is the result of the discc@tinuity in the contrib-
ution to the downwash of .Eh.eterm conta.inmg the single
integral. Ahead of. the tra.iling-edge~vave,thh term yieIded
the result that ., . . . .

-w=”_vo”~ ‘::” .-: :,

whereas behind the.wave, the contribution of th~--~ertito~~
was zero.

The method of attack used in the study of the unswept
wing can be generalized to apply to arbitrary plan forms. A
discussion of this case follows. ~

Arbitrary plan forms,—As will be shownla{er, for any pl&
form with supersonic trailing edge.; the jump in the value of
w in tho plane of the wing at the t.rtifing edge can be ca-
lculated directly by means .gf. simple momentum methods.
At this point, however, it is o.f more interest to consider in a
general mmner the nature of the integrations involved when
the point z, y, z is either ahead of or bebjnd the trailing-edge.--,-- --— ,.-.

w..
~“ ‘“”~’ :

T
x

—. x

-.. : “ P(x,y, z)
(a] (b) -.

(a) PointP ahead of t.raillngedga. (b) Pofqt P behind trWng o@?.

FIOURE 4.—Areas of fntegiation for orbitrary plon form with aupwsonic trrdl[ng @dgo,

wave. Figures 4 (a) .a.nd4 (b) show a phm fo~mwit:hast.raigh~ ~
trailing edge with ~reasof integration indic~tcd for the point .
P in each of the two positions. (The straight trailing edge ;
is riot a necessary-iest.ricticmand is only introduced for con-
venienc~of notation.) The regions of intcgrat.ionaro diviJcd
under the assumption that the first integration on i.ho pl~n ~
form in e.qua,tion(13) will be mado with respect to yl. l~en
the point .P is ahead of the trailing-edge way~, therefore, the
contribution of the wake is zero and the integration over t.hc
plan form is made to conform with regions I and II. N’hcn ~
the point is behind the t.railing-edgewave, t.hrceintc.gmlsare
evaluated corresponding to regions I, II, aud IIT. In the..-—..
case of t~e “ihfiniteaspect ratio, unswept ~tihg region I ~as,
of cour;e~ nonexistent an+ in gfmeral, no essential di~cuit.y
in regard. to the limits of integration is inkoduccd by this
region re~ardlessof whcm P ii situated. In region H, how- .
ever, the problem must be treated in moro detail.

Consider first the case.when P is ahead of the wavo &KI ‘
denote by @ll. the contribution of one sido of region H to {he
total potential. Then .,. ”.-
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(21a)
where

YI=Y+; l/(x-zJ’-l3’z’

SimilmIy, when P is behind the vmve and the same subscript
notation is used to refer to one side of region II, the value of
Quak

(21b)
where Yi is as defined above.

The contributions of the other side of region H to the po-
tential wiII not be considered separately as the behavior is
identical. When P lies shead of the wave, c ap~ears in the
Itilts for integration with respect to both yl and m. This
corresponds to the situation in equations (16) and (17) and,
as for that problem, t-helimiting process is carried out after
the integration is completed. When P is behind the wave,
it is not necessary to defer the limiting process, since

and if { ) represents the integrand, then

But since

for Co s z, s X. (i. e., { } is bounded for all dues of z’ in the
interval of the first integration]; and further, since

therefore, for P situated behind the trailing-edge wax-e, the
contribution of region Ha is ~ven by

(22)

The significance of this result.is that, when the point P at
r, y, z is behind the Mach ware from a supersonic trailing
edge, the limiting process associated with region 11 need not.
be considered. When P is ahead of the Mach wa~e, the
term e must be retained in the amdysis and the liiting
process used. As vias previously noted, the general analysis
developed in this report places no restriction on the orienta-
tion of the trailing edge; however, it should be pointed out
that region H exists only for the case in which the trailing
edge is supersonic. Therefore, the jump in clew-nwash,ob-
tained from the integration over region H is associated only

with supersonic trailing edges; whereas both the down~ash
and loading are continuous across a subsonic traihng edge.

TRIAN’GULAE WfNG

Consider a triangular wing (fig. 5) with leading edges swept
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FIGCBE5.—Regfonz A, B,and C for triangular wing in xwopkme.

back of the Mach cone from the vertex. The loading over
the wing is known to be (references 7 and 9)

(23)

where .?ZOis the complete elIiptic integra.1of the second kind _——
with modulus i&= ~/1—6’02and 190=s tan #, # being the semi-
vertex angle of the t.riangle. From equation (3)”

A@,= H1f60’x12—fFyL8 (24)
where

.

‘=% (25)

Settlng, for con-renience, @=@=+@ ~ the w40city potential ~
at-2-,y, z is given by equation (13) to be the sum of the two
expressions

zH/9’ap=–~
Ifs

li80%l*—f?2y12dZLd~l
plan form [(Z ‘XL) 2—/32 @ —~J*-~2Zq3’2

(26)

zHp
@~= –~

1ss

+j2XLz-~2@ dxf dyl
(27)

wake [(Z—XI) 2—&(y-yJ 2—&Z*]3f2
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Equation
potential

.
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(26) represents the__contribu~ionto thc ve~oeity
furnished by the. doublets distributed over t.be

plan form while equation (27) represents the contribution
furnished by doublets in the wake.. The latter cquat.ion is
the mathematical cquivakmt in supersonic flmv of the sub-
sonic velocity po~ential of’ a. sheet QKhorse&oe” vort,ices
corresponding to an elliptic s~an loqd ~istributicm. Equa-
tions (14a) and (14b) showed.timt .tlm~mmmim for @w at
x= m is identical to the velocity pottiritid of the subsonic
vortex sheet. IIowever, in the vicinity of the Z=CO line,
the behavior is entirely different,.

In the prwmt report, equations (26) and (27) will be
applied to the determination ..of clowny@l h. t:hc w and
Z2 planes.

SOLUTION lN THE X 1’ PLANE

Effect of doublets in the plan form,–-For the purposo of
integration, it is convenient to divide the area behind the
wing into three regions as sh&~ in figure 5. The division
lines separating these regions “a~eformed by the Mach cone
traces from the trailing-edge.fips.

The following symbok will. be used..ill the.. dcriyat.iog of.
the expressions for downwrwh in the .W plane induced by
the distribution of doublets. over the plan form of a triangu-
lar wing swept behind the hI~ch cone:.

E1,Ez,Ea complete elliptic intcgrds of. the second Iikd

with moduli kl, k~,and k~,respectively

K,, Kz, K complete elliptic integrals of the first,kind with
rnoduli kl, kz, and k~, respectively

/
x jl—~1

-1XL’)
@)(-)

(~P’+t2)– J(F-I.19(p–y”) “
/.J+/J’ .,

H/J+/J) – WP’”:;)(P+i(w)” ““” ““ ““-:-
P—I.4’+U

(PP’+t2)+4(t2–P9(P–P’2)..... .;. . s..:..

l.1+/J’

(w’+”-:’) +, yp-y). (t2-y’’)=.,

t(/J+P’) +- JMJ7JIJ+0 (ii’-:&)““ :..

(/Jp’+&) – J(g’–pz) (+-p’q”’- :. :“ ,-” .,

P+P’

P(w–-w) ,. _
co .-

.-

1--
-.

CO~iMITTEEFOR AEROIVAUIHCS

X—zl
t-”— cl)

to X0-l

The dcwnwash WP(z, y, O)may be obtained by considc~ing” ‘

I$#J$ iil equation (26]. It can bo shown th~t,, in tl&

case, this limiting process corresponds to taking-the parl.ial s
derivative of equation (26) with respect to z and then simply
setting i-equal to zero. Thus t.hoexpressions I’or WPiu the.
regions 44, B, and C me, rcspcct,ively,

(29) .

““:‘[RF=-+ “:”wpc=— _

vi!r===’ ~:;
... --j

“:-’[P+E”-W:— ..
(30)

The solution of the threeMegrals 11, 12, and ~~will he dis-
cussed in ~pp endL. A.

The expressions for dowrnvash in regions ~1.,B, and C nl~~” “””
then be expressed as the following singlo intcgrds which
can be handled by standard numericnl nwt.beds:----.=.“:...

11/3 ~o 1 —
“J /

2&(#i–d (K’:qdt-.:
WPA

=—- @) ;

wpB=~*[J_i;Jtz-ij~:+ -“-:- ‘

——

-.;..

“iF”{~2&P(”-’’i)’2-i)l)l-- ‘
d IIJ%(E–d(~+ko~gp (32)

2

. . —.
I
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Hp
p

-Zo 1
/

z(p) (K1–El)f&+Wpc= —~ u.+e#~~f ~-
1+8”

ufl+u~.%

_:r,~I.2~G p’-”’j2’’-2q-
- W%J( ,

I● —l+efi

/ 1
~ (hJf+/) d~+
PI -

-Uo+wo

1= “;.lW’;-’)(Ki!-lr,)dtr.Eo7 a
Effect of doublets in the wake,—The study of the down-

wash induced on the xy plane by the doublets clistribut.ed
over the wake will also be divided into the three regions
indicated in figure 5, and the syrnbols listed as follows will
be used in the derivations:

()yc “’v’—tic
g -fC-v ’

compIete elliptic integrals of the second kind
with moduli k.~,k~, find kc, respect,ively

incomplete elliptic integrids of the second kind
with arguments I/aA, l/aB, and ac~kc, and
with moduli kL, kB, and kc, respectively

h-A, &, A’c complete e~iptic integrals of the fist kind with
moduIi kL, kB, and kc, respectively

incomplete ellipt.ic integraIs of the first kind
mith arguments 1/a.A, l/~Bj and adkc, and
mod~i kd, kB, and kc, respectively

undefined limits of integration

x
Ffl

&(v+ v’) – ~’k!fo(v-v’) (v– &J)(fo+-v’)
v’—v+2&

(vv’-+&’) + ~~(:o’+ (&l’- v’?
V+v’

(Vv’ +:,9+ \/(&’–v’) (#g,’-v”]
V+VJ

~(v+-v’) + @&,(v-v’) (v–&J (&J+-v’)
V’—v+’#!

(vv’+&39 – ~1(.g+lq (#-–v”)
V+Pr

P(Y–YJ
co

On integrating equation (!2ij with respect to ZI and using
the notation just. presented

The limits on the integral as previously noted clifTerin the .
regions .4, B, and C show in figure 5; ho~~-ever,in each c~~e __
the limits are roots of one of the two radicak in the integmnd.

It is desirable to e-xpressequation ~34) in a ditYerentform”
in order to obtain tin expression for downwash in the pkme
of the airfoil. Integrating by parts

When ~~ ~ ~IS considered, it can be shown thai in

three regions the contribution to the downwash made
the doublets in the wake is given by the expression

au
by

The solution of equation (36) in regions .4., B, and C wiI1
be considered separately.
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In region A, .LI= vand Ls= v’. The &bstitution q=m7A+ ad
elimim-d.esthe linear term in the radica,l of t,he”integrnnd,
and equation (36) becomes .

.. .. . V-Y*

The identities —
..—

are useful in the integration. .
.W=l’A~A

and ... ....
(iiA-V) (/-~*)+ (6A–P’) (V–7A) =0 ““-

(?*-V “’- ““” “’ ““The t&&sformation u=— t is nmt introduced, rmdt~~. V—WA
I. .

,-
expression for dowrm;ashbecomes-. —----- . . . .. —

zI(i
7’u”A=~

4 “( )[s~O’–yA’ V–-7A 1 v+ v!

(v–~~) (7.4-V’) ‘~-4–7A)~A-v -l’’A(’+”A:(’+t:?)J=
Integrating the second term by parts and applyi~g the fundiment.al properties of even and odd function~”yiild~ “: ,

(38)
1

/.... ..... .--.-:. ....

The Jacobian transformation a=sn u reduces the inte&als in equat~oq ‘(38)-to standard elliptic forms (r~feronco 10), nnd

Region B
. .

In region B, Ll= & and LS= v’ and equation
be written

.-
?%+ 8Bt 81J-U’The tradormat.ions q=w and u=yB_vl t where

(36) may

-T’” (%3–V:) (tO–~B) + (tO–~B) (l%–V’)=0
and

“- (to+’1%) (v–~B) + (:O+~B) (v–’d =0‘~B=%r’K%’)~’-.‘ “:
()V+-vf 1 d~ -

— n– EO’+T2 J(v_q) (go+q)][(go–q) (q–v’)] “. ““2
,.. I

I

Ireduce equation (40) to —
--

(40) I - . ... . . ., ...

[d~fl 6.–YE V—(?B 1s{[-12;:i!!:.)(’+i;”’”)-(v+v’)’;(l+aB-1

‘wB=2j~ v_TB
(~B–V’)(E{–fiB2)

?O+f”::) (l+%”B)I’’:-’’)(l)”?I”?I
#

.- -.

‘%[-d ‘-’B ““‘,+-aB@<,,-,’i2)(,::,L+s:l[(’’’-~o~(’-%3+1{[(dB–v ) (&?–iB2)-
8B

I
J-1

.

. .

~.

-.
-=. .
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&l’(P+Y’)(k-%?)_ (aB–-yB)’ hr-d ‘
2yB?if3(1—aw)

(’-’#)’’-@-o’’-T%? “-’’’”” “(’-k::’(’-@)1 }
When the transformation co=m u is made, equation (41) is readily integrable (reference 10), and, after algebraic simpli-

fication, may be written

Region C

In region C, Z,=& and La= –.& and equation” (36) is
written

The deriviat.ion of the expression for Wwc is sidar to
that for Wwdwith the exception that in this case the substi-

J
Gtmtion co= —~c t is made, and equation (43) maybe written”

SOLUTION IN THE X2 PLME

Just as in the study of dowmvash in the xy plane, so dso
in its study in the x2 plane it is convenient to consider
separately the effects of the doublets distributed over the
plan form and t-he wake. The subscript notation for ww

and WPis the same as before and again w is equal to wW+ wP.
Effect of doublets in the plan form.—In the zz plane two

regions are indicated in figure 6. Ilegion E lies between the

.=3

=0

FIGIJBE&-Regiom D and E in the .?ezaplane for a 2rtongukwwing.

Mach wedge from the trailing edge and the line of intersec-
tion of the two cones from the traiIing-edge tips. Region ~
connects this region to infinity. Again the limits of integrat-
ion form the basis of the division into the iwo regions.

The symbols listed below will be used in the derivation
of the e.spressionsfor dow-nwashin the M plane, induced by
the distribution of doublets over the plan form of the wing.

~4j.E5,-Gp50 complete elliptic integra.laof the second kind
with moddi kd, k5, Icdo,and k60,respectively

&,l&K%,K50 complete elliptic integrals of the firatiliind
with moduli kd, ks, k%, and ksO,respectively

k,

k4~

k,

f?”co

~j (3– c,) ‘+2’

Region D

In region ~, equation (26} is written

Integrating with respect to VIleads to

Changing the variable of integration gives

Taking the partial derivative of %D with respect to z gives
the expr=~ion for the downwash as

[wt%–~802x’+/9z’(kJwo7]+

J(ha xsk~@o*
o [@”%’+ p’2’(k~’–@0913”’ -1)(,*)

(K,–E’,)(fk4
}

(45)
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Region E

In region E, a similar derivation yields the solut.ion
alE ‘-

E~,E~~-
,. :-.

E(a’~, k’J
E(a’B, FE)}

~,4-:

KD,K.

F(cz’D,k’J
F(a’E, /i?iz)}~:

k~ ‘---

kf~ ..

kz .“
=.>

k’=
,,

m? (icYJ
.

872*(iqr) ““

Region D”

—...
eoco~_ . . . ... ~~ : .. -:. -

complete elli tic intc rals of tthosecond kind
J fvnth mod . i kD an k~, respectively.- . . .

incomplete elliptic integrals of the second kind ‘
with arguments a’D and U’3 and moMi k’D
and k’B, respectively .- .

with mod~ k~ an~k., rqqmctively -
complete elli tic into rals of the first l&NI

“.=-%%X*2) ““” “:
iq,[x–~1~’k5:8/+-@’z2(l-k,j:7 ];” ““““’-”‘.

.
~&2k~026’Oz+/9%*(1-~~o%’oz) . . .. .

r

1 K5—E5 60
{“

x3k5%o=
. k% k, }l–kh2802[x2kb200z+~2z9(l–k52@oz)]3’2—1 ‘1C5+

J {
x8k4g02

; (K,–EJ “~~ ~i+~2z=(&2-~J)]v= 1]
-1 dk4

—
(46)

incomplete elliptic intcgrrds..of the first kind
wjt.h arguments a’D and a’~ ancl moduh k’D

and k’x, respectively
-.

elfo
4(z-co)=-f?2z~

-—
Effect of doublets in the wake.—The- limits of integr~{ion

again necessitate the divisio~ .of the portion of the plane
behind the trailing-edge waye into tiio “regio~, D and”-?3.
The following list of symbols will be used in the derivation
of downwash in the xz plane, induced by the doublets
distributed over the vortex wake:

1

..”..—.—-. ..-... ...—.

Jk+-co)+%., ._, . .:”
/32 —aL?2

.
—aRh

. . ..

-,
aE MO

~

.,

In region D, equation (27) becomes
. .- ..-. .

(47)

Integrating with respect to x,, ind using the definition of j- ‘- ““ ““>::.

o~c~

*wD=@+co) -T --- wco:-@21/13 .:
—.

n- r-o (!/?+22) 1%-co)=-p%l=-p~z= ~y:

=H(x–co) ~02c02 -” i-J
-,~~>”-”“,;;””

r lieIili=@=jv( )ell~co2~z
~+~ ~~1=k~=(,o=

where ..

~_m ~~ :.::,
eOco

Applying the Jacobian transformation’ ti=m u. “’”” ‘..

QJVD=” E@- co)6’o’co~”’ ~DJ7@z4(x-co)”~-@ o 1+:;%.’. ‘u (48)

The expression for %~ m given in eijua.t.ion (48) is”inte-
gmble (reference 10) and becomes -:” “” -.

H(x–co) b’:c~
%=T~z~(*-co)2-& ‘[.. (

KD~/1 +a.~2k~, 1 “”
“KD– kQ~l/l+aD~

X )‘iG

[
iaL)\/1+UD%kDz.~”- _ ‘“” .....”.

‘F(a’D’ “D) +“–-7W

,

‘[‘ &J~(a’D, It’D) –&~((Z’~J /C’D)–ff~~(d~,ii’~) 1}““(49).
$ince’ it may be s~own that

I

~ [KDF(a’D,k’D) –EDF(af~, k’ZJ)–K~E(a’~, k’D)] = – . ,

$he expression for the downwnsh W1;Dobtained by taking the
partial derivative of @WDwith respect to z may bc writkm

___
K;

,1

,/~ ‘ - -–. ,
wIvD=~ “–~+KD$’’a’D2)- ~~_-2 [K#(a’D,~~’D)- :DLD

~~~(a.’~, k’~)–I_Jl(a’~, WJ]
}

(50)
----
. ---

.-— .-
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gives

(51)

Conditions at the trailing edge.—The due of the ;ert ical
induced -i-eloc.it.yimmediately ahead of and behind. the
traihg-edge -wa-remust., of course, be determinable clirect-ly
from equations (21] and (22), respectively, by setting
X=CO+ Z19. If, how-ever, the discussion is restricted to the
s= O plane, a much simpler method exists for finding the
downwmh at these points. The approach taken here foIIows
essentially that.given by La.gerat.romin reference 4.

,
~’--_-- ~m~ /,.nea :-------_ ---4t

.’,. ,
1’ ;d

;’
v~ 1. -+b

r’

,’
: :

r J’1’ ,’
: ,’
8’ ,’
‘.. “,
‘i
‘!

..,,

FIGGRIC7.-Sketch ofreIocity rectors of the afr beforereaching, on, snd after Imving super-
sonicafrfoil.

Let. conclit,ions just ahead of the traihng-edge wave be
denoted by the subscript 2 and conditions just behind the
wa-ie by the subscript 3. Nlgure 7 shows a section of a
given -wing in the plane y=const ant-. The l[ach waves at
the. leading and t.railing edge make the angle po=arc sin
l/.l10 with the z= O phme, and the wing is presumed to be
at angIe of attack a. Assuming the trailing edge to be
normal to the free-stream direction, the -rariation in the x
component in velocity -when passing through t-he t.railing-
edge via-re can be treated as a. tmodimensional problem
with the c.ondition imposed that uS= O in the z= O pla.ne.

it is known that continuity of How t.ogether with balance
of tangential momentum across the wave lead to the result.
that the component of relocity tangential to the wave is
cent inuous. The tangential components of ~elocity, V,,
immediately ahead of and behind the wave are given,
respectively, by the expressions

(VJ2=(VO+UJCos po+wz sin PO

( VJ3= V. cos PO+U*3sin P.

Equating these rela-t.ions,it follows that

U-3=W2 +1.!a COtI A

From equation (23)

from which it. follows that

(52)

Approximate values of downwash near center line of
wake.—The wdues of dowmwtsh which were obtained on the
w and rz pianes “of the wake were exact-solutions subjected
to no restrictions other than those originally imposed by the
use of the linearized equations of flow. CIDthe center Ike
equations (31), (33), (39], and (44) reduce to the considerably
simpler expressions

(55)

(Qr=o= –: =-Jc’)& (56)

where

(k,),=o=x~

(A%),.o=x~

(LJ“=o=z~

(kc) ,=o=~+

Since the above expressions are relatively simple to com-
pute, an approximate methocl based on the generalized __
Taylor’s expansion in the vicinity of the line y=z=O can
be formulated which recluces the todiousness of the calcula-
tions and gi~es a good indication of the variation in the
clownwash function in a portion of the wake for points nem
the center line. The next higher terms in the expansion
can be founcl without diflicdty for the region bounded as
follovis:

(a.) –; b<y< ; b

(b) Both g and z lie within the Mach cones
from the trailing-edge tips

2-JMflM—51-113
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The problem resolves itselfkto one of finding the first
nonvanishing coefficients of VOand ZOin the series .

w/wo=AO+AlzO+.Blyo+ 4s02+ Czz0yo+B4/02+, . . . . (57)

where
G

W()=— — -=’ .-
2H/3

The wdue of AOis known frofi equations (53) and (55) to be

From equations (28) and (36)_the expression for total dol~-
wash may be written . . .-

“-()The coefficient B, in the e~pansion “isgiven .by ~ ~O=o.

Carrying out the differe~ltiati~., with-proper regard for the
singularity in the first in~gral, it follows that Ill= O.
Similarly, it can be shown LI.N$C2=0, while the coeffi-cieht

()
I azw

B2=~ ~ ~O=ois given by ihe expression ,.

( 2-~Aa
E=TW 2K.4 l_kA2 )–—E. –

LJ [
1
22 .1“(k,+eo) E, =,–K, + dh (58)

where the variables hive previously been defh~d.
In order to calculate the variation with z, it is necessary

()mto evaluate Al= =2 ~=owhere

The double integral contributes nothing to the coefficient,
and the remaining portion of the expression can bgjwalugted
without integrating by diflcrentiatidg twice and using
Cauchy’s inkegraltheorem

Thus
$.- ““-”()i.#)&2.; 3.

qfl *,=f.
.. .. ..”

(59)
—..

The coefficient A2 will not be evaluated sinc~ the first
higher order term @ .s has been found; Thus, to the first

— —

order in go and zO,the downvmsh function wjwois

.-

. DISCUSSION ‘:” ‘

The y~iable w/@ (i. e., (wP+wr)/wJ represents the tof,al” ‘
downwash behind the. wing divided by the induced vertical
velocity on the wing itself. If c is the downwash anglo rmd’a
the a!~g~e-of attack of the wing, then w/wo=deJdct. ‘ “.—

. . . ....L.,--

‘/.0 1.2 1.4 /.6’ 1.8 2.0 22 2.4 2.6
xo, ~isfmce in chord !eng*I%S

—
(d 00=0.4. ““ .:- ~~--- ;

—. (b) 80=0.M. .- .- -.
(e)80=0.8.

FIGURE8.—WIriotI0rIof tho downwash in the row plane downstre~m from tho l.rall[ngcdc@
for variousspsn stations.

---

In fig~r.e8, the do~nw&h in th~ ry plane-is”p&seritc~ fo~
various 8.’s and spanwise stations and for all values of z
from the trailing edge to a point vrherothe asymptotic vnluo
is closely approached. The region covered in they direction
extends from the x axis out to about (1/2) 80,whcxc iu ~ho
coordinate system used Z. equals z/co~y. equals Byjco, and
00 is the semispa.n of the wing. Figura 8 can be used to

,

,
1

1

I
I

—
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a~se= ~.heaccuracy of the appro.xinmtion, given by equation

(60), that the value of do=ivnwashis independent of y in
the neighborhood of the z axis. Within about a half span
from the trailing edge of the wing no genera~statement can
be made as to the -wu.-iationof USIWOin they direction. For
distances greater than a half span from the traihng edge,
however, the variation is quite uniform and w/wOdeviates

from its due at g=O onIy sligMy for –~ 80<Yo<~ do.

t
I ,. .-,

1 m-+1

FIGmrE9.—Veristion of downwash mroee the span at mrfoue stations downstream of ?&g
Ml& edge for .90=0.6.

For 6.=0.6, a more extensive study -was made of the
variation of downwash with y. F~e 9 represents values
of w/w. across the span for several positions behind the
t.raiIing edge. Immediately behind the t.railing edge the
value of w/u’. falls and approaches — co as the wing tip is
approached. However, at 0.4 of a root chord behind the
trailing edge (zO=1.4), w/wOrises and reaches khe due of
0.7 as the wing tip is reached. .4t XO= 2.2, the spanwise
variation of w/w*Ois essential~y constant. Although equa-
tion (60) is applicahle only for region .4, it is seen from figure
9 that the approximation that the downw-ashdoes not vary
with y is useful out to about a third of a. semispan for all
values of x.

The variation of dowmrash in the xz phne is pr-rsentec?in
figure 10. The curves represent values of WIUYOfrom the
traiIing-edge wave downstream to a point where the asymp-
totic vaIue is closely approached. In the immediate vicinity
of the Mach cones from the trailing-edge tips (i. e., ZO= 1+ flo)

the curves ~ere not continued because WIWObecomes ~ery
huge and approaches negative infinity as the hIach cone is
approached. Since this effect resuhs from infinitely hwge
values of the radial component of induced velocity at the
Mach cone., it does not exist in the zO=O plane. Such a
behavior is consistent with the mathematical idealization of
infinite pressures at. the leading eclge and of an abrupt fa.M
of load at the trailing edge. IIowever, in an actual flow field
where these phenomena do not exist the flow wilI experience
a milder change in passing across the AIach cone. Fhen
in the theoretical results presented in this report the growth
of the -rerticaIinduced velocit.y in the neighborhood of the
Jlach cone is logarithmic, and the interval in which w/w. is
appreciably distorted from the general trend is very small.

L

w
X

(a) 86=0.4.
(b) 80=0.6.

(c) h=o.s.

FWGRE10.—Vcwiationof the downwesh in themroPhme downstream from th6 trsilii edge.

Some further insight into the behavior of w in the viciniby
of the llach cone from the trailing-eclge tips can be obtained
by studying a single vortex ~l~tichextends ifiitely far ahead
of the origin at an oblique angle to the flow and infinitely
far behind the origin paralIel to the flow (fig. 11). The half
of the vortex which extends ahead makes an angle with the
free-stream direction less than t-heMach angle so that the

z
w, , :-- hsi-hbn of

L ?4

J/‘;:1
.4 ‘ A62h cone of

-.. benf vorfex:
. i’ .-,

-C.‘. vet-f ex.

r

. L1
‘\

;/ “--i3eni vtw+ex c

~ ‘-- bhbed vortex
A““”Secirim k -A w x

Irl I

-rlwY-
Se&im B-B Seotion c-c

FIGUEE11.—Indueed rertfcal velcrity 5eId for bentandunbentsupersonicobfiquerort~
mdcii anangIewfth the free stream 1ssstbsn the Mach engIe.
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component of free-stre.amvelocity normal to it wiI1be sub-
sonic. Thus, outside of the khc.h cone originating at the
sudden bend in the vortex at the origin, the flow will be ex-
actly like that of a.linearized.compressible subsonic vortex
with a supwimposcd uniform velocity parallel to the line of
the vortex. Insido the Mach cone, however, the flow is
completely changed. Figure 11 gives an indication of..!he-.
change, The term “bent” vortex refers to the vortex along
the z fi.xis which is turned suddenly at the origin from the
angle it had ma.intaine.d from - m. ‘-The t&lfi “unb~fit”
vortex on the other hand refers to a vortex which maint,a~ns
tbe same angle from — w. td- + cc. The unbent vortex is
includecl in figure 11 for cotiparative purposes. The figure
shows that on the z= Oplane (section AA) t,hedownwash is
finik and continuous in passing through the Mach cone, but
that above the z=O plane (section BB) the value of w be-
comes infinite as tho cone surfaco is approached from the
inside. This behavior at the hls,ch cone may aid in inter-
preting the discontinuity in the results for the complete
wing as given in figure 10. -‘- ““=- , ~~

— Emcf liheorized fhOOry...
–––– +Proximfe fh&ory
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FIGURE12.—Vrw!ationof downwash in“the zo?aplane at various positions on a rds.

~ppro.ximate values of dcnvgwash i~ljhe TZphkeC6mput,ed
from equation (60) are compared in figuic 12 with tl~eresults

.—.

from the exact solution. “The approximation ~hat to a first
order the vmia.tion of w/w. With a#o “;s“linear with a slopo
—l/lZOis seen to be-useful up to t-tbouta,third of a se.rnispan.

I’tducx of w/w. were not computed for points off the irz
and xv phuw.s;however, the methods given in the report are
general and directly applicable. The results already “~i&
would indicate that the approximate solution is valid”in Fhe
vicinity of (1/3)60 about the X.axis. This assumption can bc
che.ekedfor large distancm behM the trailing cdgg by ccm-
sidering the flow field as rOapproaches w. Thus figure 13
shows a comparison between “theexact ~alue of wjwOderived
by means of the line.arized equation and the approximate
method based upon the use of a generrtlizcdTiylor’s eipn.n-
sion. The agreement is seento be sat&f@_ctoryout to about
one-third of a semispan either vertically or horizontally from
the z axis. —

Throughout the a.ua.lysisit was ob}fious that the calcul~-
tion of the downwa,sh due %0.‘the doublets on the wake WTF
was much simpler to pe~fo~ t.h?.n @ calculation of the
dowmva.sh due to the doublets on t.hu.pkm form WP.”““F&
example, the forrmdas for the..downwdl on the x axis were

-.

ci311hIfii~E FOR’AERONA”UTICS
. . . . . .._ .
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FIGURE13.—Downwashat a large dfshmcobehind triinguIar wtng.

given in terms of-the elliptic intcgrn.ls ZZand .K; for Wll, thG
evaluation of E and K was su.fikient but for Wr a numerical
integration involving E and K was neccssqr. Thcrcfolre,
in calculating the downwash for wings with phm forms ot.hcr
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FIGURE14.—Vrtr!ationof tho psrt of downwaah onx axis induced by doublets fu wnko with
.@stancedownstream In chord lengths,xD=z/cc. Trkngnlm Wng.
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than triangular, it is useful to know in what regions the con-
tribution of WPto w is srurdl. For this purpose a.comparison
of WWwith UJPalong the.z axis of the triangular wing is shown
in figures 14 and 15. Figure 14 gives the value w#u~O,figure
15 the value of wP/wo, and figure 16 the tota~ dovrnwmh
(wW+ wP)/u~Oor just w/wO. An inspection of figure 15 shows

Lo

.8
w

z
.6

.4
m 1.2 1.4 1.6 LB 20 22 .2A 2B

xo, disfonce in chmz%

Frmrms 16.–Vsriation of the totaf dowmvach on z ads behind a trhmguIer wiog swept be-
hind Wach cene with diitance downstream fn chord lengihs, ?E=ZICO.

that.the effec%of the doublets on the plan form cIiesout rap-
idly behind the point Xo= 1+ 80, that is behind the point of

?.0

.8
w

K
.0

.4
Lo 1.1 [2 L3

FIGURE17.—Variationof dovmwwh onz axfswith Mach number at various posttionsdown,
sfream of traiig edge. *=455.

intersection of the z a.tis with the >lach cone from th~
tra.iling-eclge tip.

.%n in~lcdtion of the variation of domm-ash with Mach
number is given in figure 17. This figure shows values of
U@. on the z axis plotted as a function of J1o for vKlous
values of rO.- The value of the sweepba.ck angle is 45°, and
the Mach number rmge covered could be extended to 1.4
and the leading edge -wouldremain subsonic.

-,
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‘ APPENDIX A ..- — .—.—.

EVALUATION OF SPECIAL INTEGRALS ““”

Integralll

“Since there are no singularities in 11, the finite pait”i~n
mayba discarded, The line.ar fiermin-the radicql is el@i-
nated by the transformation q= (YI+&t)/(1 +t) and the
integral becomes

(Al)

The expressions for & and YImay be combined to give the
usefd identities

..—.—. . ..... .. .

~%~,ti,
and

(w-P) (h-~’) =W-yljv,-p) - - ~~
.-

Noting that the integrand” is an even func~on~equafion
(Al) may be reduced to the canonical form

,
by the substitution

: ..—-
.

-..

By the. introduction of the Jacobian cIlipt.ic functions
(referencti”10) in the transformation u=sn u, the integration
may be completcd, and

(A3)

where cd u=m ufdn u.
.-

Integral 12
i

As the first itep in reducing IZ to canonical form the intcgrn~
is written

.-

H~2= “’f ~+t’ –t(/J+/J’) +W’ _t’+y-&+PP’. I_ dq
P 2g(q–g) 4(t+~)(#’–T)i(t–T) (T–/J) :

(.44)

...-

In this case the following. identities may be obtained . (t+m)(~’-–h) + W–72) ($+h) =0

&-P t are ma* .
directly from the definitions of w and &:

,- 72+&t
(m-k) (!+%) + (’y,-.i) (p-a,) =0 “.. “:..

The transformations q=w and O= ~P—

and and aft& algebraic simplifications equa~ion (A4) becomes

/%{[1-(62-,/,(82+,) (’:) “- - @2-P)(%&$ l[r:i(l-i2t?(l-:9.“ :(i-%)(K+E)w-t)(72–J c-d (F-i).

“= (P’–:n-i)

[ ‘“L!;Yi’)(1-ka~)lf:l(l-k;3:~Ql=:+(’i7+::i’” (’+’~)lil(l-w:;:;la’:} & :-
By applying the fundame.n~~ prope;’ties of even and”odd ‘“and~f .. .

—

functions, the first two integrals in equation (A5) can readily
j(~) =(l+u)vfl>l–)c,~i~ .. . . ,:;;be integrated. The procedure for ha@ling the finitg part.

sign over the third integrt-d,I?ill. be considered ‘in det~il. ,
Since,

and

, ,+.:j(l) = 1 I

Is

l+U

r

1 “1 du 23\9~~ ‘- : .“ ““” ‘

‘“dU=’
-1 (1—d) 4(1 —kz%z)(1—@ (1–d)’l’~1 –k,%’ then by equation (6)

.- .,. .

J
~. d(t)[sI du J .

1 d= -“: 1
~

o (1 —coqql=zzrz ~ (1 —wy’~~- 1023fl(l-w)3fa4w 4- =—

[s1 du 1
— .,

2
0 (1 — 6?) 3f2~7=?p7 -15 J2(1–; (1–k,z) =

[s“-&h 1.2 ~
1

= — .i
.+1 4’ (1–0) (1–~2~)

{[
~1 –k?co’ “’-”E, _~m 1–~ 1Iicz+lirn— —- }~+,(1-1,2)~1–c02‘:1–W-H@&w4(l–fz’)‘-.

.( ‘)-2 K+34 .

— .—. *.. ... . ... . ----228
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The solution of equation (A5)
simpMication
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becomes, after algebraic

Integral 18

The procedure for integmting 13 is simiIar to that pre-
viously discussed in connection with 11. In this case, the

d

—

integral is canonicalized by the substitution a= $ t and

the solution may be written

(.A7)
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